

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE Further Mathematics AS Further Mechanics 2 Paper 8FM0_26

Edexcel and BTEC Qualifications

www.mymathscloud.com Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 8FM0_26_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

www.nymathscloud.com

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

www.mymathscloud.com

- 1. The total number of marks for the paper is 40.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.

 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.

7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- dM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
 - N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
 - M(A) Taking moments about A
 - N2L Newton's Second Law (Equation of Motion)
 - NEL Newton's Experimental Law (Newton's Law of Impact)
 - HL Hooke's Law
 - SHM Simple harmonic motion
 - PCLM Principle of conservation of linear momentum
 - RHS, LHS Right hand side, left hand side

oles)

erms that

			Ph
Questio	n Scheme	Marks	AL
1(a)	The rods are uniform and the axes of symmetry intersect at midpoint of AC .	B1	2.4
		(1)	
1(b)	Use moments: e.g. $M(A)$: $(2aW + aW + 3aW = 4aT_B + aW)$	M1	2.1
	e.g. $M(A)$: $5W.2a \cos 60^{\circ} = 4aT_B$ or $M(B)$: $3a \times 5W = 4aT_A$	A1	1.18
	Resolving vertically: $T_A + T_B = 5W$	M1	2.1
	$\Rightarrow T_A = \frac{15W}{4}, T_B = \frac{5W}{4}$	A1	1.1b
		(4)	
1(c)	T_A will be the larger, so the first to exceed $6W$ so need to use $T_A = 6W$ (e.g. by M(B) but they may use two equations) to form an equation in k only.	M1	3.1a
	$6W \times 4a = 5W \times 3a + kW \times 6a + 2kW \times 2a$	A1	1.1b
	24aW = 15aW + 10kaW	A1	1.1b
	k = 0.9	A1	1.1b
		(4)	
		(9 r	narks
	Notes		
(a)	Any equivalent clear justification. Needs to mention uniformity and symidpoint of AC	ymmetry a	and the
(b) I	Form ANY moments equation. Require all terms. Dimensionally cornsign errors.	rect. Cond	done
1	Correct unsimplified (including trig) equation e.g. $M(G)$: $T_a.2a \cos 60^\circ = T_a.(4a - 2a \cos 60^\circ)$ or $T_a.(4a \cos^2 30^\circ)$		

e.g. M(G): $T_A.2a\cos 60^\circ = T_B.(4a - 2a\cos 60^\circ)$ or $T_B.(4a\cos^2 30^\circ)$ Form a second equation in T_A and/or T_B e.g. by resolving vertically or a second M1moments equation, and solve for T_A and T_B Both tensions correct. If answers reversed, allow M marks. **A**1 Realise that the first to break will be the rope at A and complete method to form an equation in k only (allow uncancelled W's) using $T_A = 6W$. Require all terms (in all (c) M1 equations used). Dimensionally correct. Condone sign errors. M0 if they use $T_B = 6W$ to find k (this gives k = 9.5) Unsimplified equation or inequality in k only with at most one error **A**1 **A**1 Correct unsimplified equation or inequality in *k* only **A**1 Correct only. Decimal or fraction.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn. M.	The Man
$\frac{(2+v)^2}{2} = 4t + C_1$ A1 1.1b $t = 0, v = 2 \Rightarrow C_1 = 8$ M1 3.4 $\frac{(2+v)^2}{2} = 4t + 8$ A1 1.1b $(2+v)^2 = 8t + 16, v = \sqrt{8t + 16} - 2 *$ A1* 2.2a (6) $2(a) \text{ alt}$ $a = \frac{4}{2+v} \Rightarrow \int (2+v) dv = \int 4 dt$ $2v + \frac{v^2}{2} = 4t + C_2$ M1 1.1b $t = 0, v = 2 \Rightarrow C_2 = 6$ M1 3.4 $2v + \frac{v^2}{2} = 4t + 6$ A1 1.1b $4v + v^2 = 8t + 12, (v + 2)^2 = 8t + 16$ $\Rightarrow v = \sqrt{8t + 16} - 2 *$ (6) (b) $v = 4 \Rightarrow 36 = 8t + 16 \Rightarrow t = 2.5$ $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ M1 3.3 $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ M1 1.1b $x = \frac{1}{12}(8t + 16)^{\frac{3}{2}} - 2t + C$ M1 1.1b $t = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ M1 3.4 $AB = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3}$ (m) A1 1.1b	Question	Scheme	Marks	Maths
$\frac{(2+v)^2}{2} = 4t + C_1$ A1 1.1b $t = 0, v = 2 \Rightarrow C_1 = 8$ M1 3.4 $\frac{(2+v)^2}{2} = 4t + 8$ A1 1.1b $(2+v)^2 = 8t + 16, v = \sqrt{8t + 16} - 2 *$ A1* 2.2a (6) $2(a) \text{ alt } \qquad a = \frac{4}{2+v} \Rightarrow \int (2+v) dv = \int 4dt$ $2v + \frac{v^2}{2} = 4t + C_2$ M1 1.1b $t = 0, v = 2 \Rightarrow C_2 = 6$ M1 3.4 $2v + \frac{v^2}{2} = 4t + 6$ A1 1.1b $4v + v^2 = 8t + 12, (v + 2)^2 = 8t + 16$ $\Rightarrow v = \sqrt{8t + 16} - 2 *$ (6) $(b) \qquad v = 4 \Rightarrow 36 = 8t + 16 \Rightarrow t = 2.5$ $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ M1 3.3 $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ M1 1.1b $x = \frac{1}{12}(8t + 16)^{\frac{3}{2}} - 2t + C$ M1 1.1b $1 = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ M1 3.4 $AB = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ A1 1.1b	2(a)	$a = \frac{4}{2+v} \implies \int (2+v) dv = \int 4 dt$	M1	2.1
$t = 0, v = 2 \Rightarrow C_1 = 8$ $\frac{(2+v)^2}{2} = 4t + 8$ $(2+v)^2 = 8t + 16, v = \sqrt{8t + 16} - 2 *$ $A1 = 1.1b$ $(2+v)^2 = 8t + 16, v = \sqrt{8t + 16} - 2 *$ $A1 = 2.2a$ (6) $2(a) \text{ alt}$ $a = \frac{4}{2+v} \Rightarrow \int (2+v) dv = \int 4 dt$ $2v + \frac{v^2}{2} = 4t + C_2$ $A1 = 1.1b$ $t = 0, v = 2 \Rightarrow C_2 = 6$ $2v + \frac{v^2}{2} = 4t + 6$ $4v + v^2 = 8t + 12, (v + 2)^2 = 8t + 16$ $\Rightarrow v = \sqrt{8t + 16} - 2 *$ (6) $v = 4 \Rightarrow 36 = 8t + 16 \Rightarrow t = 2.5$ $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ $x = \frac{1}{12}(8t + 16)^{\frac{3}{2}} - 2t + C$ $41 = 1.1b$ $t = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ $4B = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ $A1 = 1.1b$		$\frac{\left(2+v\right)^2}{2} = 4t + C_1$		1.1b
$\frac{(2+v)^2}{2} = 4t + 8$ $(2+v)^2 = 8t + 16, v = \sqrt{8t + 16} - 2 *$ $A1 = 1.1b$ $(2a) alt = \frac{4}{2+v} \Rightarrow \int (2+v) dv = \int 4dt$ $2v + \frac{v^2}{2} = 4t + C_2$ $M1 = 1.1b$ $t = 0, v = 2 \Rightarrow C_2 = 6$ $2v + \frac{v^2}{2} = 4t + 6$ $4v + v^2 = 8t + 12, (v + 2)^2 = 8t + 16$ $\Rightarrow v = \sqrt{8t + 16} - 2 *$ $(6a)$ $(b) = v = 4 \Rightarrow 36 = 8t + 16 \Rightarrow t = 2.5$ $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ $x = \frac{1}{12}(8t + 16)^{\frac{3}{2}} - 2t + C$ $t = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ $A1 = 1.1b$			A1	1.1b
$(2a) \text{ alt} \qquad (2a) \text{ alt} \qquad (2b) \qquad (2a) \text{ alt} \qquad (2b) \qquad (2a) \text{ alt} \qquad (2b) \qquad (2b) \qquad (2a) \text{ alt} \qquad (2b) \qquad (2$		$t=0, v=2 \implies C_1=8$	M1	3.4
2(a) alt $a = \frac{4}{2+v} \Rightarrow \int (2+v) dv = \int 4dt$ M1 2.1 $2v + \frac{v^2}{2} = 4t + C_2$ M1 1.1b $t = 0, v = 2 \Rightarrow C_2 = 6$ M1 3.4 $2v + \frac{v^2}{2} = 4t + 6$ A1 1.1b $4v + v^2 = 8t + 12, (v + 2)^2 = 8t + 16$ A1* 2.2a $\Rightarrow v = \sqrt{8t + 16} - 2$ (6) (b) $v = 4 \Rightarrow 36 = 8t + 16 \Rightarrow t = 2.5$ B1 1.1b $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ M1 3.3 $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ M1 1.1b $t = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ M1 3.4 $AB = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3}$ (m) A1 1.1b		$\frac{\left(2+v\right)^2}{2} = 4t + 8$	A1	1.1b
2(a) alt $a = \frac{4}{2+v} \Rightarrow \int (2+v) dv = \int 4dt$ M1 2.1 $2v + \frac{v^2}{2} = 4t + C_2$ M1 1.1b $t = 0, v = 2 \Rightarrow C_2 = 6$ M1 3.4 $2v + \frac{v^2}{2} = 4t + 6$ A1 1.1b $4v + v^2 = 8t + 12, (v + 2)^2 = 8t + 16$ A1* 2.2a $\Rightarrow v = \sqrt{8t + 16} - 2$ M6 (b) $v = 4 \Rightarrow 36 = 8t + 16 \Rightarrow t = 2.5$ B1 1.1b $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ M1 3.3 $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ M1 1.1b $t = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ M1 3.4 $AB = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3}$ (m) A1 1.1b		$(2+v)^2 = 8t+16, v = \sqrt{8t+16}-2 *$	A1*	2.2a
$t = 0, v = 2 \Rightarrow C_2 = 6$ $2v + \frac{v^2}{2} = 4t + 6$ $4v + v^2 = 8t + 12, (v + 2)^2 = 8t + 16$ $\Rightarrow v = \sqrt{8t + 16} - 2 *$ (6) (b) $v = 4 \Rightarrow 36 = 8t + 16 \Rightarrow t = 2.5$ $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ $x = \frac{1}{12}(8t + 16)^{\frac{3}{2}} - 2t + C$ $t = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ $AB = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ $A1 = 1.1b$			(6)	
$t = 0, v = 2 \Rightarrow C_2 = 6$ $2v + \frac{v^2}{2} = 4t + 6$ $4v + v^2 = 8t + 12, (v + 2)^2 = 8t + 16$ $\Rightarrow v = \sqrt{8t + 16} - 2 *$ (6) (b) $v = 4 \Rightarrow 36 = 8t + 16 \Rightarrow t = 2.5$ $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ $x = \frac{1}{12}(8t + 16)^{\frac{3}{2}} - 2t + C$ $t = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ $AB = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ $A1 = 1.1b$	2(a) alt	$a = \frac{4}{2+v} \implies \int (2+v) \mathrm{d}v = \int 4 \mathrm{d}t$	M1	2.1
$t = 0, v = 2 \Rightarrow C_2 = 6$ $2v + \frac{v^2}{2} = 4t + 6$ $4v + v^2 = 8t + 12, (v + 2)^2 = 8t + 16$ $\Rightarrow v = \sqrt{8t + 16} - 2 *$ (6) $(b) \qquad v = 4 \Rightarrow 36 = 8t + 16 \Rightarrow t = 2.5$ $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ $x = \frac{1}{12}(8t + 16)^{\frac{3}{2}} - 2t + C$ $t = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ $AB = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ Al 1.1b		$2v + \frac{v^2}{2} = 4t + C_2$	M1	1.1b
$2v + \frac{v^2}{2} = 4t + 6$ $4v + v^2 = 8t + 12, (v + 2)^2 = 8t + 16$ $\Rightarrow v = \sqrt{8t + 16 - 2} *$ (6) $1.1b$ $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ $x = \frac{1}{12}(8t + 16)^{\frac{3}{2}} - 2t + C$ $x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ $AB = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ A1 1.1b			A1	1.1b
$4v + v^{2} = 8t + 12, (v + 2)^{2} = 8t + 16$ $\Rightarrow v = \sqrt{8t + 16} - 2 *$ (6) $1.1b$ $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ $x = \frac{1}{12}(8t + 16)^{\frac{3}{2}} - 2t + C$ $x = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ $A1 = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ A1 = 1.1b		$t = 0, \ v = 2 \implies C_2 = 6$	M1	3.4
$\Rightarrow v = \sqrt{8t + 16} - 2 *$ (6) $v = 4 \Rightarrow 36 = 8t + 16 \Rightarrow t = 2.5$ $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ $x = \frac{1}{12}(8t + 16)^{\frac{3}{2}} - 2t + C$ $t = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ $AB = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ Al 1.1b		$2v + \frac{v^2}{2} = 4t + 6$	A1	1.1b
(b) $v = 4 \Rightarrow 36 = 8t + 16 \Rightarrow t = 2.5$ B1 1.1b $\frac{dx}{dt} = \sqrt{8t + 16} - 2$ M1 3.3 $x = k(8t + 16)^{\frac{3}{2}} - 2t + C$ M1 1.1b $x = \frac{1}{12}(8t + 16)^{\frac{3}{2}} - 2t + C$ A1 1.1b $t = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ M1 3.4 $AB = \frac{1}{12}(36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3}$ (m) A1 1.1b			A1*	2.2a
$\frac{dx}{dt} = \sqrt{8t + 16} - 2$ $x = k (8t + 16)^{\frac{3}{2}} - 2t + C$ $M1 = \frac{1}{12} (8t + 16)^{\frac{3}{2}} - 2t + C$ $A1 = \frac{1}{12} (8t + 16)^{\frac{3}{2}} - 2t + C$ $A1 = 0, x = 0 \Rightarrow \frac{64}{12} + C = 0, C = -\frac{16}{3}$ $AB = \frac{1}{12} (36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ $A1 = 1.1b$			(6)	
$x = k (8t + 16)^{\frac{3}{2}} - 2t + C$ $x = \frac{1}{12} (8t + 16)^{\frac{3}{2}} - 2t + C$ $A1 1.1b$ $t = 0, \ x = 0 \Rightarrow \frac{64}{12} + C = 0, \ C = -\frac{16}{3}$ $AB = \frac{1}{12} (36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ $A1 1.1b$	(b)	$v = 4 \implies 36 = 8t + 16 \implies t = 2.5$	B1	1.1b
$x = \frac{1}{12} (8t + 16)^{\frac{3}{2}} - 2t + C$ $t = 0, \ x = 0 \implies \frac{64}{12} + C = 0, \ C = -\frac{16}{3}$ $AB = \frac{1}{12} (36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ $A1 1.1b$		$\frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{8t + 16} - 2$	M1	3.3
$t = 0, \ x = 0 \Rightarrow \frac{64}{12} + C = 0, \ C = -\frac{16}{3}$ $AB = \frac{1}{12} (36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ A1 1.1b		$x = k \left(8t + 16 \right)^{\frac{3}{2}} - 2t + C$	M1	1.1b
$AB = \frac{1}{12} (36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3} \text{ (m)}$ A1 1.1b		$x = \frac{1}{12} \left(8t + 16 \right)^{\frac{3}{2}} - 2t + C$	A1	1.1b
		$t = 0, \ x = 0 \implies \frac{64}{12} + C = 0, \ C = -\frac{16}{3}$	M1	3.4
(6)		$AB = \frac{1}{12} (36)^{\frac{3}{2}} - 5 - \frac{16}{3} = \frac{23}{3}$ (m)	A1	1.1b
			(6)	

		Notes
(a)	M1	Notes Notes Form differential equation in v and t and prepare to integrate.
	M1	Integrate to obtain $k(2+v)^2$ or equivalent
	A1	Correct integration. Condone missing constant of integration.
	M1	Use the model to find the value of constant of integration.
	A1	Correct solution in any form
	A1*	Obtain given solution from correct working. Allow use of quadratic formula.
(a) alt	M1	Form differential equation in v and t and prepare to integrate.
	M1	Integrate to obtain $k(2+v)^2$ or equivalent
	A1	Correct integration. Condone missing constant of integration.
	M1	Use the model to find the value of constant of integration.
	A1	Correct solution in any form
	A1*	Obtain given solution from correct working.
(b)	B1	Use the result from (a) to find t when $v = 4$: seen or implied
	M1	Form differential equation in x and t
	M1	Integrate to obtain terms of the correct form. Condone missing constant of integration.
	A1	Correct integration. Condone missing constant of integration.
	M1	Use boundary conditions in the model to find constant of integration, or as limits on a definite integral. Note this is an independent M mark. M0 if they use $t = 4$

Correct answer only. 7.7 (m) or better

A1

		nnn	18
Question	Scheme	Marks	VMary 140
3(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Marks Marks	1sclo
	No vertical motion: $T_A \cos \theta = mg$	M1	1.1b
	$T_A = \frac{5mg}{4}$	A1	1.1b
	Circular motion: $T_B + T_A \sin \theta = m \times \frac{v^2}{r}$	M1	3.1b
	$T_B + \frac{3}{5}T_A = m\frac{v^2}{3a}$	A1	1.1b
	$T_B > 0 \left(\Rightarrow v^2 > \frac{9ag}{4} \right)$	DM1	2.1
	$T_{B} \leq \frac{3mg}{2} \implies m\frac{v^{2}}{3a} - \frac{3}{4}mg \leq \frac{3}{2}mg, \ \left(m\frac{v^{2}}{3a} \leq \frac{9mg}{4}\right)$	DM1	2.1
	$\Rightarrow \frac{9ag}{4} < v^2 \le \frac{27ag}{4} *$	A1*	2.2a
		(7)	
(b)	Use $v^2 = \frac{27ag}{4}$ and $T = \frac{2\pi r}{v}$ oe	M1	3.1b
	$T = 4\pi \sqrt{\frac{a}{3g}}$	A1	1.1b
		(2)	
		(9 n	narks)

		Notes
(a)		Notes N.B. If they have the same tension in both parts of the string, can score ONLY first M1A1 for a correct equation. N.B. If no right angle at <i>B</i> , could score max: M1A0M1A0DM1DM1A0 One equation in <i>T</i> , and / or <i>T</i> . Dimensionally correct with all relevant terms
	M1	One equation in T_A and / or T_B . Dimensionally correct, with all relevant terms. Condone sign errors and sin/cos oe confusion
	A1	Correct equation (no trig)
	M1	Form a second equation in T_A and / or T_B . Dimensionally correct, with all relevant terms. Condone sign errors and sin/cos oe confusion. Allow $mr\omega^2$
	A1	Correct equation (no trig)
	DM1	Use the model to form one inequality or equation in v^2 , a and g only, dependent on both M's
	DM1	Use the model to form a second inequality or equation in v^2 , a and g only dependent on both M's Allow use of $T_B = \frac{3mg}{2}$ or $T_B < \frac{3mg}{2}$
	A1*	Deduce the given answer from correct working. Only available if working with inequalities throughout and fully correct
(b)	M1	Correct method to find T in terms of a and (g) only. They may sub 9.8 for g of course
	A1	Any equivalent form but no fractions within fractions. If they use 9.8 for g , the numerical part needs to be to 2 sf or 3sf. i.e $2.3\sqrt{a}$ or $2.32\sqrt{a}$

								W.	1/2
uestion			Sche	me				Marks	MAK
4(a)	In the folding distance from		ch point o	f the la	ımina rema	ins	the same	Marks B1 (1)	2.
								(1)	
(b)	For the folded	l lamina:	$\overline{x} = 2a$	$(=d_2)$	oe			B1	1.1b
	Distances from	m <i>EA</i>							
	Large triangle (ACE)		noved e (BCD)		d triangle <i>BCD</i>)	Fc	olded lamina		
	$27a^2$	12	$2a^2$		$12a^2$		$27a^2$		
	3 <i>a</i>		5 <i>a</i>		а		$\overline{\mathcal{Y}}$		
	Altamativa 1								
	Alternative 1 Distances from	m <i>BD</i>							
	Rectangle <i>EDBH</i>		angle <i>HA</i>		riangle DBC	Fo	olded lamina		
	$12a^2$	3	a^2		$12a^2$		$27a^2$		
	1.5 <i>a</i>	2	2 <i>a</i>		2 <i>a</i>		$\overline{\mathcal{Y}}$		
	Alternative 2								
	Distances from	m <i>BD</i>							
	Triangle	Triangle	2 x Rect		2 x Triang	gle	Folded		
	FAB	EFC 2	DGE		BGF		lamina		
	$\frac{6 a^2}{2a}$	$\frac{3a^2}{4a}$	12 <i>a</i>		$6a^2$		$\frac{27a^2}{\overline{y}}$		
		'1 u	1.30	ı	а		<u> </u>		
	Area ratios							B1	1.2
	Distances from EA						B1	1.2	
	Moments abo	ut EA:						M1	2.1
		$27 \times 3a - 1$		$2 \times a =$	$27\overline{y}$			A1 ft	1.1b
			$\overline{y} = \frac{11a}{9}$					A1	1.1t

		www.n.m.	1
Question	Scheme	Marks	V _{Data}
(b) cont	G A		18010
	$\theta = \tan^{-1} \frac{4a - \overline{x}}{3a - \overline{y}} \left(= \tan^{-1} \frac{9}{8} \right) \text{ or } (90^{\circ} - \theta) = \tan^{-1} (\text{reciprocal})$	M1	1.1b
	$\alpha = \tan^{-1} \frac{4a - \overline{x}}{3a - \overline{y}} + \tan^{-1} \frac{2}{3} \text{or oe}$	M1	3.1b
	= 82° (nearest degree)	A1	1.1b
	Alternative for the final 3 marks:		
	$\overrightarrow{BA}.\overrightarrow{BG} = \frac{2}{9} \begin{pmatrix} -9 \\ -8 \end{pmatrix}. \begin{pmatrix} 2 \\ -3 \end{pmatrix} \left(= \frac{4}{3} \right)$		1.1b
	$\cos \alpha = \frac{\frac{4}{3}}{\frac{2}{9}\sqrt{145}\sqrt{13}} (=0.138)$	M1	3.1b
	$\theta = 82^{\circ}$	A1	1.1b
		(9)	
		(10 1	narks)

Notes

		Notes www.nyn
(a)	B1	Notes Notes Any equivalent explanation e.g. folding doesn't change the mass distribution relative to CD. A calculation to verify is not the same as an explanation. Allow use of 'vertical' for CD.
(b)	B1	Seen anywhere

(b) B1 Seen anywhere

Distances from EA

Large triangle (ACE)	Removed triangle (BCD)	Added triangle (BCD)	Folded lamina
$27a^{2}$	$12a^2$	$12a^2$	$27a^2$
3 <i>a</i>	5 <i>a</i>	а	$\overline{\mathcal{Y}}$

N.B. B marks only available for viable dissections Other dissections are possible:

Alternative 1

Distances from BD

Rectangle <i>EDBH</i>	Triangle <i>BHA</i>	Triangle DBC	Folded lamina
$12a^2$	$3a^2$	$12a^2$	$27a^{2}$
1.5 <i>a</i>	2 <i>a</i>	2 <i>a</i>	\overline{y}

EDBH + BHA + DBC, where H is midpoint of AF

Alternative 2

Distances from BD

Triangle	Triangle	2 x Rectangle	2 x Triangle	Folded
FAB	EFC	DGEF	BGF	lamina
$6a^2$	$3a^2$	$12a^2$	$6a^2$	$27a^2$
2 <i>a</i>	4 <i>a</i>	1.5 <i>a</i>	а	\overline{y}

 $FAB + EFC + (2 \times DGEF) + (2 \times GBF)$, where G is midpoint of DB

B1	Any equivalent form for the mass (area) ratios
B1	Or correct distances from an alternative axis parallel to AE e.g. BD

Moments about AE or a parallel axis. Need all terms. Must be dimensionally correct. M1 Condone sign errors.

A1ft Correct unsimplified moments equation ft on their 'table'

A1 Correct (for their axis) only

M1 Correct use of trigonometry to find a relevant angle

M1Correct strategy for the required angle.

A1 Correct answer only

www.mymathscloud.com